Process Control Event 2022

Team Name:

Team Number:

Team Captain:

Written Test points awarded:

MC points awarded:

Simulator points awarded:

Total Event Points:

```
Simulator - Computer
    9 total questions
    50 to 300 points per question
    1000 max points available
```

Multiple Choice - Computer
48 total questions
10 to 20 points per question
720 max points available

Multiple Choice Math - Pages 2-5 (4)
20 total questions
40 to 60 full credit points per question
50% partial credit if math is correct but answer is incorrect
0 points is work is not shown
1000 max points available

Process Scenarios - Pages 6-26(21)
17 total questions
100 full credit points per question
50% partial credit if math is correct but answer is incorrect
0 points is work is not shown
1700 max points available

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

\#	question	Choices		work shown=20 points correct+work=40 points		
1	What is the loading BOD loading rate to a WWTF if the influent BOD is $250 \mathrm{mg} / \mathrm{l}$ and the the flow is $450,000 \mathrm{gpd}$?	A	$1055 \mathrm{lbs} / \mathrm{day}$	correct	work?	total
		B	938 lbs/Day			
		C	$112 \mathrm{lbs} /$ day			
		D	$555 \mathrm{lbs} /$ day			
2	What is the percent removal of a primary clarifier if the raw TSS is 210 ppm, the primary EFF TSS is 39 ppm , and the final EFF TSS is 4.5 ppm ?	A	97.80\%	correct	work?	total
		B	18.60\%			
		C	81.40\%			
		D	55.20\%			
3	How many million gallons does a circular tank that is 120 ft in diameter and 16 ft deep hold?	A	5.41 MG	correct	work?	total
		B	0.08 MG			
		C	0.18 MG			
		D	1.35 MG			
4	What does a sludge that is 2% solids equal in ppm?	A	20,000 ppm	correct	work?	total
		B	2,000 ppm			
		C	$\begin{gathered} 200,000 \\ \text { ppm } \end{gathered}$			
		D	200 ppm			
5	What is the chlorine demand if the influent contact basin is dosed at $3 \mathrm{mg} / \mathrm{l}$ and the effluent contains $1.2 \mathrm{mg} / \mathrm{I}$?	A	$4.2 \mathrm{mg} / \mathrm{l}$	correct	work?	total
		B	1.8 mg/l			
		C	$3 \mathrm{mg} / \mathrm{l}$			
		D	$1.2 \mathrm{mg} / \mathrm{l}$			

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circl	he letter coresponding to the answer provided for for each que	tio		For grade	s use on	
\#	question		hoices	work	$\begin{aligned} & \text { shown }=20 \\ & \text { t }+ \text { work }=40 \end{aligned}$	$\begin{aligned} & \text { ints } \\ & \text { oints } \end{aligned}$
	Calculate the sludge volume index if the 30 min settling volume is 210 and the MLSS is $2800 \mathrm{mg} / \mathrm{l}$.	A	250	correct	work?	total
		B	85			
		C	75			
		D	200			
	Calculate the BOD from the following: Volume $=15 \mathrm{ml}$	A	122 mg/l	correct	work?	total
	Initial DO = $9.2 \mathrm{mg} / \mathrm{l}$	B	$152 \mathrm{mg} / \mathrm{l}$			
		C	$75 \mathrm{mg} / \mathrm{l}$			
		D	$132 \mathrm{mg} / \mathrm{l}$			
	If a pump at 100\% efficient can produce 27 PSI, how many vertical feet can it pump if it is 85% efficient?	A	62 ft	correct	work?	total
		B	33 ft			
		C	11 ft			
		D	53 Ft			
	If a lift station pumps 2.7 MGD and the pumps run for 10.5	A	3,952 gpm	correct	work?	total
		B	4,286 gpm			
		C	2,572 gpm			
		D	3642 gpm			
	What HP motor is needed to pump 1,500 gpm at 39 ft of head?	A	10 HP	correct	work?	total
		B	15 HP			
		C	12 HP			
		D	50 HP			

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle	the letter coresponding to the answer provided for for each qu	tio		For grade	s use on	
\#	question		hoices	work	$\begin{aligned} & \text { shown }=30 \\ & t+\text { work }=60 \end{aligned}$	
	A WWTF treats an annual average flow of 2.3 MGD. If the average sewer user produces 100 gpd per person and the town has 18,000	A	21.7\%	correct	work?	total
		B	18.5\%			
		C	42.1\%			
		D	78.2\%			
	If a stabilization pond is 30 acres, how long will it take to raise the level by 3 feet at a flow rate of 0.35 MGD?	A	14.7 Days	correct	work?	total
		B	10.2 Days			
		C	83.7 Days			
		D	97.6 Days			
	What is the velocity in $\mathrm{ft} / \mathrm{sec}$ in an 8 " force main carrying a flow of 1250 gpm?	A	$10.51 \mathrm{ft} / \mathrm{sec}$	correct	work?	total
		B	$4.97 \mathrm{ft} / \mathrm{sec}$			
		C	$6.54 \mathrm{ft} / \mathrm{sec}$			
		D	$7.94 \mathrm{ft} / \mathrm{sec}$			
	What is the organic loading rate in lbs/1000 ft2 on a 10 ft deep, 80 ft diameter trickling filter if the influent flow is 2.2	A	$\begin{array}{\|c\|} \hline 13 \\ \mathrm{lbs} / \mathrm{d} / 1,000 \\ \mathrm{ft} 2 \\ \hline \end{array}$	correct	work?	total
	MGD, the BOD is 195 , and the media contains 5.5 ft 2 per ft3?	B	$\begin{array}{\|c\|} \hline 71 \\ \mathrm{lbs} / \mathrm{d} / 1,000 \\ \mathrm{ft} 2 \end{array}$			
14		C	$\begin{gathered} \hline 45 \\ \mathrm{lbs} / \mathrm{d} / 1,000 \\ \mathrm{ft} 2 \end{gathered}$			
		D	$\begin{array}{\|c\|} \hline 56 \\ \mathrm{lbs} / \mathrm{d} / 1,000 \\ \mathrm{ft} 2 \\ \hline \end{array}$			
	A WWTF plant treats 2 MGD with $50 \mathrm{lbs} /$ day of sodium hypochlorite. If the effluent Cl 2 residual is $1.2 \mathrm{mg} / \mathrm{l}$, what is	A	2.2 mg/l	correct	work?	total
	the demand	B	1.8 mg/l			
		C	48.8 mg/l			
		D	3.0 mg/l			

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Process Scenario 1: Activated Sludge
You must show your work to receive full credit even if the answer is correct
Operational Data

	Influent Avg:	Permit Limit:	Aeration Data		Clarifier Data	
Flow	2.98 MGD	6.5 MGD	\# of Tanks	2	\# of Tanks	2
Temp	15 Deg C	NA	Length	120 Ft	Diameter	85 Ft
BOD	$215 \mathrm{mg} / \mathrm{I}$	$50 \mathrm{mg} / \mathrm{I}$	Width	40 Ft	Depth	16 Ft
TSS	$210 \mathrm{mg} / \mathrm{I}$	$50 \mathrm{mg} / \mathrm{I}$	Depth	16 Ft	Blanket Dept	2 Ft
NH3	$26 \mathrm{mg} / \mathrm{I}$	$5 \mathrm{mg} / \mathrm{l}$	MLSS	$2650 \mathrm{mg} / \mathrm{I}$	RAS Conc	$6500 \mathrm{mg} / \mathrm{l}$
pH	$7.3 \mathrm{s.u}$.	$6.0-8.0$ s.u.	MLVSS	77%	WAS Conc	2.10%
Alkalinity	$150 \mathrm{mg} / \mathrm{I}$	NA	30 Min Sett	210	WAS Rate	$32,000 \mathrm{gpd}$

Process Scenario 1: Activated Sludge

You must show your work to receive full credit even if the answer is correct

Process Scenario 1: Activated Sludge
 You must show your work to receive full credit even if the answer is correct

Process Scenario 1: Activated Sludge

You must show your work to receive full credit even if the answer is correct

Process Scenario 1: Activated Sludge

You must show your work to receive full credit even if the answer is correct

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct
Operational Data
The Lewiston Auburn Water Pollution Control Authority operates two (2) mesophilic anaerobic digesters, each with a volume of 92,245 cubic feet. On average, the facility pumps 50,000 gallons per day of combined Primary and Thickened Waste Activated Sludge (TWAS) with a 5.5% solids concentration and 70% Volatile Solids. The digester feed solids average $212 \mathrm{mg} / \mathrm{l}$ of Volatile Acids and $1255 \mathrm{mg} / \mathrm{l}$ of Alkalinity. The facility averages 50% Volatile Solids destruction, and produces 12.5 cubic feet of biogas for every pound of Volatile Solids it destroys. The biogas fuels two (2) Combined Heating \& Power (CHP) units capable of producing 230 kW of power. The engines require 1 Cubic Feet per Minute (CFM) of biogas for every 3-kW of power produced.

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct
(How many average pounds of total volatile solids are pumped to the digester daily?

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct

Process Scenario 2: Anaerobic Digestion and Energy Recovery
You must show your work to receive full credit even if the answer is correct

Process Scenario 3: Chemical Addition for Nutrient Removal You must show your work to receive full credit even if the answer is correct

Operational Data

	Influent Avg:	Aerobic Zone Effluent:	Anoxic Zone Effluent:	Permit Limt:
Flow	6.5 MGD	6.5	6.5	10 MGD
Temp	15 Deg C	15.5 Deg C	15 Deg C	NA
BOD	$215 \mathrm{mg} / \mathrm{l}$	$5.5 \mathrm{mg} / \mathrm{l}$	$5.5 \mathrm{mg} / \mathrm{l}$	$10 \mathrm{mg} / \mathrm{l}$
TSS	$210 \mathrm{mg} / \mathrm{l}$	$2,500 \mathrm{mg} / \mathrm{l}$	$5.5 \mathrm{mg} / \mathrm{l}$	$10 \mathrm{mg} / \mathrm{l}$
Total N	$37 \mathrm{mg} / \mathrm{l}$	$37 \mathrm{mg} / \mathrm{l}$	$1.5 \mathrm{mg} / \mathrm{l}$	$542 \mathrm{Lbs} / \mathrm{day}$
TKN	$35 \mathrm{mg} / \mathrm{l}$	$1.3 \mathrm{mg} / \mathrm{l}$	$1.3 \mathrm{mg} / \mathrm{l}$	NA
NH3	$33 \mathrm{mg} / \mathrm{l}$	$0.1 \mathrm{mg} / \mathrm{l}$	$0.1 \mathrm{ml} / \mathrm{l}$	$1.0 \mathrm{mg} / \mathrm{l}$
Total P	$10 \mathrm{mg} / \mathrm{l}$	$2 \mathrm{mg} / \mathrm{l}$	$4 \mathrm{mg} / \mathrm{l}$	$55 \mathrm{Lbs} / \mathrm{day}$
pH	$7.3 \mathrm{s.u}$.	$6.7 \mathrm{s.u}$.	$7.2 \mathrm{s.u}$.	$6.0-8.0 \mathrm{s.u}$.
Alkalinity	$280 \mathrm{mg} / \mathrm{l}$	$30 \mathrm{mg} / \mathrm{l}$	$155 \mathrm{mg} / \mathrm{l}$	NA

Additional Information:

Methanol required for denitrification: 1.9 grams per gram of NO3
BOD required for denitrificaiton: 2.86 grams per gram of NO3
Ferric Chloride required to remove Total P: 5.2 pounds per pound of Total P
Ferric Chloride \$0.41 per pound

Process Scenario 3: Chemical Addition for Nutrient Removal
You must show your work to receive full credit even if the answer is correct

Process Scenario 3: Chemical Addition for Nutrient Removal You must show your work to receive full credit even if the answer is correct

Process Scenario 3: Chemical Addition for Nutrient Removal
You must show your work to receive full credit even if the answer is correct

Process Scenario 3: Chemical Addition for Nutrient Removal You must show your work to receive full credit even if the answer is correct

Process Scenario 4: Effluent Filtration
You must show your work to receive full credit even if the answer is correct

Operational Data

Multi- Media Gravity Filter Information		Backwash Flow Rates	
Filter dimensions	(4) $11^{\prime}-10^{\prime \prime} \times 24^{\prime}-0^{\prime \prime}$	Water TempDegrees F	B/W Rate GPM/FT ${ }^{\text {2 }}$
Air Scour Rate	2.5 SCFM/SQFT	50 or less	15
Air Scour Time	120 seconds	51-55	16
Max. Loading Rate	3500 GPD/SQFT	56-60	17
Gravel (1" x 5/8")	$3 "$	61-65	18.5
Gravel ($5 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$)	3"	66-70	20
Gravel ($3 / 8^{\prime \prime} \times 3 / 16^{\prime \prime}$)	3"	71-75	21
Gravel (3/16" x \#10)	3"	Above 75	22.5
Silica Sand	12"		
Anthracite (1.5 g/cm3)	22"		
Effluent Temperature	10-20 Degrees C		
Backwash Water Source	Filtered Effluent		

Process Scenario 4: Effluent Filtration
 You must show your work to receive full credit even if the answer is correct

Page \#

Process Scenario 4: Effluent Filtration
You must show your work to receive full credit even if the answer is correct

Page \#

Process Scenario 4: Effluent Filtration
You must show your work to receive full credit even if the answer is correct

Page \#

Process Scenario 4: Effluent Filtration
You must show your work to receive full credit even if the answer is correct

Page \#

