NEWEA/NYWEA Operations Challenge

Process Control Event 2023

Team Name:

Team Number:

Team Captain:

Written Test points awarded:

MC points awarded:

Simulator points awarded:

Total Event Points:

```
Simulator - Computer
    50 to 300 points per question
    1000 max points available
```


Multiple Choice - Computer

10 to 20 points per question
450 max points available

Multiple Choice Math - Pages 2-6(5)
25 total questions
40 full credit points per question
50% partial credit if math is correct but answer is incorrect
0 points is work is not shown
1000 max points available

Process Scenarios - Pages 7-25 (19)
19 total questions
50-100 full credit points per question
Bonus SPA question worth 500 full credit points
50% partial credit if math is correct but answer is incorrect
0 points is work is not shown
1700 max points available

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

\#	Questions		hoices
16	Given a feed sludge TSS of 3.7% to a belt filter press, a return flow TSS of 0.039%, and a Cake TS of 15%, calculate the solids recovery	A	96.0\%
	$=\quad 15 *(3.7-.039) * 100=99.2 \%$	B	97.2\%
		C	98.8\%
		D	99.2\%
17	Calcualte the F / M for an activated sludge plant with two aeration tanks, each 92,000 gallons, primary effluent of $260 \mathrm{mg} / \mathrm{l}$, aeration tank MLSS of $1900 \mathrm{mg} / \mathrm{l}$ in each tank, volatile content of 82%, and an influent flow of $152,000 \mathrm{gpd}$.	A	$0.11 \mathrm{lb} / \mathrm{d} / \mathrm{lb}$
		B	$0.14 \mathrm{lb} / \mathrm{d} / \mathrm{lb}$
	$\begin{aligned} & \text { Ib IVIVSS }=2^{*} .092 \text { VIG }^{*} .82^{*} 1900^{*} 8.34=2390.8448 \mathrm{lb} \\ & \text { Loading }=.152 \mathrm{MG}^{*} 260 \mathrm{mg} / \mathrm{I}^{*} 8.34=329.5968 \mathrm{lb} / \mathrm{d} \\ & \text { F/M }=329.5968 \mathrm{lb} / \mathrm{d} / 2332.5312 \mathrm{lb}=0.14 \mathrm{lb} / \mathrm{d} / \mathrm{lb} \end{aligned}$	C	$0.17 \mathrm{lb} / \mathrm{d} / \mathrm{lb}$
		D	$0.2 \mathrm{lb} / \mathrm{d} / \mathrm{lb}$
18	Compost is to be blended from wood chips and dewatered sludge. The wood chips are mixed with 10 yd 3 of dewatered sludge at a ratio (by volume) of 3:1. The solids content of the sludge is 15% and the solids content of the wood chips is 54%. If the buld density of the sludge is $1685 \mathrm{lb} / \mathrm{yd} 3$ and 750 $\mathrm{lb} / \mathrm{yd} 3$ for the wood chips, what is the percent solids content of the compost blend? Lb Dry Sludge + Lb dry chips	A	17\%
		B	27\%
		C	37\%
	Lb Sludge + Lb Chips (10*1685*.15+3*10*750*.54)*100		
		D	54\%
	10*1685 + 3*10*750		
19	Flow $=186,000$ gpd, Influent BOD=254 mg/l, Effluent BOD = 9 mg / I, Influent TSS=299 mg/l, Effluent TSS $=8 \mathrm{mg} / \mathrm{I}$, Influent Nitrogen (all Ammonia) $=25 \mathrm{mg} / \mathrm{l}$, The facility does not have primary treatment. Calculate the theoretical alkalinity BOD reduction $=254-9=245 \mathrm{mg} / \mathrm{I}$ Ammonia consumpion during BOD reduction $=5 / 100 * 245=12.25 \mathrm{mg} / \mathrm{l}$ \#1b Ammonia to be nitrified $=(25-(12.25+1.5))^{*} .186 * 8.34=17.45 \mathrm{lb} / \mathrm{d}$ Theoretical Alkalinity consumption $=17.45 * 7.14=124.6 \mathrm{lb} / \mathrm{d}$	A	124.6 lb/d
		B	$141.2 \mathrm{lb} / \mathrm{d}$
		C	$174.5 \mathrm{lb} / \mathrm{d}$
		D	$260.0 \mathrm{lb} / \mathrm{d}$
20	A RBC treatments systems has two RBC's each with 100,000 ft2 of standard density media. The RBC's are operated in parallel for with an influent flow of 100,000 gpd, influent BOD $=240$ mg / l, primary effluent BOD $=145 \mathrm{mg} / \mathrm{l}$. For an even flow slpplit, calculate the organic loading to each RBC.$\text { OLR }=\left(50,000 \mathrm{gpd}^{*} 145 \mathrm{mg} / \mathrm{I}^{*} 8.34\right) / 100(1000 \mathrm{ft2})=0.605 \mathrm{gpd} / 1000 \mathrm{ft2}$	A	$\begin{array}{\|c\|} \hline 0.605 \\ \mathrm{lb} / 1000 \mathrm{ft2} \end{array}$
		B	$\begin{gathered} 1.0 \mathrm{lb} / 1000 \\ \mathrm{ft} 2 \end{gathered}$
		C	$\begin{gathered} \hline 1.2 \mathrm{lb} / 1000 \\ \mathrm{ft} 2 \end{gathered}$
		D	$\begin{array}{\|c\|} \hline 2.0 \mathrm{lb} / 1000 \\ \mathrm{ft} 2 \end{array}$

Math Multiple Choice

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.
Circle the letter coresponding to the answer provided for for each question

\#	Questions		hoices
21	If the feed rate of 0.8% flocculant cncentration is $12 \mathrm{lb} / \mathrm{hr}$ for a 4.2% sludge fed at a rate of $2700 \mathrm{lb} / \mathrm{hr}$ to a belt filter press, calculate the flocculant dose in lb flocculant/ton solids treated. sludge feed $=2700 \mathrm{lb} / \mathrm{hr} / 2000 \mathrm{lb} /$ ton $=1.35 \mathrm{ton} / \mathrm{hr}$ Flocullant dose = $\mathbf{1 2} \mathrm{lb} / \mathrm{hr} / 1.35$ ton sludge $/ \mathrm{hr}=8.89 \mathrm{lb}$ floccula	A	4.2 lb flocculant/ton sludge
		B	5.2 lbflocculant $/$ ton sludge7.1號
		C	7.1 lb flocculant/ton sludge
		D	$\begin{array}{\|c\|} \hline 8.9 \mathrm{lb} \\ \text { flocculant/ton } \\ \text { sludge } \\ \hline \end{array}$
22	Calculate the water horsepower for a pump to move water for an elevation change of 21.59 feet with pipe friction losses of 1.98 ft and minor losses of 6.92 ft for a flow of 800 gpm .$\begin{aligned} & \text { Head }=21.59 \mathrm{ft}=1.98 \mathrm{ft}=6.92 \mathrm{ft}=30.49 \mathrm{ft} \\ & \mathrm{WHP}=800 * 30.49 / 3960=6.1596 \mathrm{hp} \end{aligned}$	A	4.3 hp
		B	1.8 hp
		C	6.2 hp
		D	8.2 hp
23	Calculate the pounds of air needed in an aeration tank to reduce the tank influent BOD from $145 \mathrm{mg} / \mathrm{l}$ to $15 \mathrm{mg} / \mathrm{l}$ at a flow of 1.2 MGD. Assume an oxygen requirement of 1.1 lb oxygen $/ \mathrm{lb}$ BOD and that the facility is at sea level elevation. lb BOD removed $=1.2 *(145-15)=* 8.34=1301.04 \mathrm{lb} / \mathrm{d}$ Oxygen required $=1.1 \mathrm{lbO2} / \mathrm{lbBOD} * 1301.04 \mathrm{lb} / \mathrm{d}=1431.144 \mathrm{lb} 02 / \mathrm{c}$ Air required $=1431.144 / .21=6814.97 \mathrm{lb} / \mathrm{d}$	A	$7600 \mathrm{lb} / \mathrm{d}$
		B	$6810 \mathrm{lb} / \mathrm{d}$
		C	$1600 \mathrm{lb} / \mathrm{d}$
		D	$1430 \mathrm{lb} / \mathrm{d}$
24	Calculate the flow velocity in a grit channel that is 9 ft long, 18 inches wide, and 18 inches deep at a flow 200,000 gpd.$\begin{aligned} & \text { Area }=1.5 \mathrm{ft} * 1.5 \mathbf{f t}=\mathbf{2 . 2 5} \mathbf{f t 2} \\ & \text { velocity }=\frac{200,000 \frac{\mathrm{gal}}{\mathrm{day}}}{2.25 \mathrm{ft}^{2}} * \frac{1 \mathrm{ft}^{3}}{7.47 \mathrm{gal}} * \frac{1 \mathrm{day}}{1440 \mathrm{~min}} * \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=0.138 \frac{\mathrm{ft}}{\mathrm{sec}} \end{aligned}$	A	$0.069 \mathrm{ft} / \mathrm{sc}$
		B	$0.14 \mathrm{ft} / \mathrm{sec}$
		C	$0.2 \mathrm{ft} / \mathrm{sec}$
		D	$1.1 \mathrm{ft} / \mathrm{sec}$
25	A alum jar test on secondary effluent using an alum test solution of 20 mg Alum $/ \mathrm{ml}$ had an optimum dose at 1.4 ml of test solution in a 2 liter test beaker. Using the results of this test, calculate the daily alum required for a flow rate of 3.4 MGD.	A	284 lb
		B	397 lb
		C	560 lb
		D	794 lb

correct	work?	total
\mathbf{B}		

Process Scenario \#1: Primary Clarification
You must show your work to receive full credit even if the answer is correct

Operational Data

You are designing a new Wastewater Treatment Plant that will be built with a 200 MGD design dry weather flow. The plant influent TSS is expected to average $150 \mathrm{mg} / \mathrm{L}$. The design standards being used are as follows:

Hydraulic Loading Rate - 2000 gpd/sqft
TSS Removal - 65\%
Number of Tanks - 8
Passes per Tank - 4
Weir Overflow Rate - 40,000 gpd/sqft
Primary Tank Flow Velocity $=2 \mathrm{ft} / \mathrm{min}$

Process Scenario \#1: Primary Clarification

You must show your work to receive full credit even if the answer is correct

Process Scenario \#1: Primary Clarification
You must show your work to receive full credit even if the answer is correct

Process Scenario \#1: Primary Clarification

You must show your work to receive full credit even if the answer is correct

Process Scenario \#1: Primary Clarification

You must show your work to receive full credit even if the answer is correct

Process Scenario \#2: MBR

Process Information:

The MBR consisit of two paralell trains that receive even flows. The membranes are hollow fiber. There are 19 membrane racks per tank and 42 membrane modules per rack. Each module in the rack has a surface area of $65 \mathrm{ft}^{2}$.

Tanks Volumes		MLSS
Anoxic:	86,830 Gallons	$5,350 \mathrm{mg} / \mathrm{L}$
Aerobic:	256,700 Gallons	$5,350 \mathrm{mg} / \mathrm{L}$
Membrane:	120,000 Gallons	$7,100 \mathrm{mg} / \mathrm{L}$
		75% volatile

Process Scenario \#2: MBR
B. For a SRT of 10.2 days calculate the WAS rate. Include the mass in the MBR Tank.
Anoxic MLVSS $=2^{*} .086830^{*} 8.34^{*} .75=5811.401655 \mathrm{lb}$
Aerobic MLVSS $=2^{*} .2567^{*} 5350^{*} 8.34^{*} .75=17180.54595 \mathrm{lb}$

For Graders Only	
Points 25/50	Proper Answer
	A

Process Scenario \#2: MBR
A. If the membrane module has a flux rate of $34.3 \mathrm{gpd} / \mathrm{ft}^{2}$, calculate the membrane area required for a peak daily flow of 2.7 MGD.
Flux = Q $/ \mathrm{A}$
Area $=2,700,000 \mathrm{gpd} / 34.3 \mathrm{gpd} / \mathrm{ft}^{2}=78,717.202 \mathrm{ft}^{2}$
B. Calculate the number of membrane racks for each treatment train, if each membrane module has an
\# modules required $=78717.202 / 65=1211$
\# racks = 1211/42 = 28.8
\#racks/train = 28.8/2 = 14.4 - round to 15 racks/train

A	10
B	15
C	16
D	19

For Graders Only	
Points 25/50	Proper Answer
	C

For Graders Only	
Points $25 / 50$	Proper Answer
	B

Process Scenario \#2: MBR
$\left\{\begin{array}{l}\text { A. Given that the nitrogen content of the vola } \\ \text { converted into nitrogen gas, assuming a sludge } \\ \\ \text { Eff } N=1.2 \mathrm{MGD} D^{*} 4 \mathrm{mg} / /^{*} 8.34=40.032 \mathrm{lb} / \mathrm{d} \\ \text { WAS } N=4380.59 \mathrm{lb} / \mathrm{d}^{*} .75^{*} .12=\mathrm{lb} / \mathrm{d} \\ \text { Influent } N=1.2 \mathrm{MGD} * 50 \mathrm{mg} / \mathrm{I}^{*} 8.34=500.4 \mathrm{lb} / \mathrm{d}\end{array}\right.$

A	$60 \mathrm{lb} / \mathrm{d}$
B	$66 \mathrm{lb} / \mathrm{d}$
C	$106 \mathrm{lb} / \mathrm{d}$
D	$110 \mathrm{lb} / \mathrm{d}$

For Graders Only		
Points 25/50	Proper Answer	
	B	

B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the
influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that
nitrification in the aerobic zone reduces the ammonia to $1 \mathrm{mg} / \mathrm{l}$ following BOD removal.

N Consumed w BOD Removal $=(225-8) * 5 / 100=10.85 \mathrm{mg} / \mathrm{l}$
N remaining after BOD Removal $=50-10.85=39.85 \mathrm{mg} / \mathrm{l}$
Alkalinity consumed by nitrification $=(39.85-1)^{*} 7.14=279.531 \mathrm{mg} / \mathrm{l}$

For Graders Only	
Points 25/50	Proper Answer
	C

Process Scenario \#2: MBR

A. Each membrane rack has a treated flow rate of 60 gpm and an 15 minute operating cycle. The operating cycle is 12 minutes in operation mode and 3 minutes in relaxation mode, calculate the number of gallons treated by a rack in an hour at the influent flow of 1.2 MGD.
\#cycles/hour =4, \# minutes operation/hour = 4*12 = 48 minutes
treated water $=60 \mathrm{gpm} * 48$ minutes $=2880$ gallons

A	2880 gal
B	3200 gal
C	3600 gal
D	4800 gal

B. Each membrane rack goes through a maintenance clean every 4 days. Each maintenance clean lasts for 60 minutes. At the daily flow rate of 1.2 MGD, calculate the number of gallons of wastewater processed by each rack between each maintenance clean event. Each membrane rack has a treated flow rate of 60 gpm with a operating cycle of 12 minutes in operation mode and 3 minutes in relaxation mode.

\# operating cycles $=4 * 1440 / 15=384$
\# min operating/cycle $=12$

For Graders Only	
Points 25/50	Proper Answer
	A

\# min treating water $=384^{*} 12=4608 \mathrm{~min}$
Treated water $=60 * 4608=276480$ gallons

Process Scenarios \#3 - State Point Analysis

Process Scenarios \#3 - State Point Analysis

Two Part Question. You must answer both question correctly for full credit

Process Scenarios \#3 - State Point Analysis

Two Part Question. You must answer both question correctly for full credit
Draw a new overflow line on the SPA diagram below to show what would happen if the influent flow increased.
Because no flow data is given, the line you draw does not have to be exact, just demonstrate that you understand the concept
State Point Analysis - Project - Date

For Graders Only	
Answer	Points 50/100
See lines in red	

Draw a new underflow line on the SPA diagram below to show what would happen if the RAS flow increased.
Because no flow data is given, the line you draw does not have to be exact, just demonstrate that you understand the concept
State Point Analysis - Project - Date

Process Scenarios \#3 - State Point Analysis

Bonus Question 2X Points. You must get all parts correct and show your work for full credit.

Given the following WWTF Data:	
Influent Qi	2 MGD
RAS Qras	1.6 MGD
MLSS	$2000 \mathrm{mg} / \mathrm{L}$
Clarifier Diameter	50 Ft
\# of Clarifiers	2
SLR = Qi/A X MLSS + Qras/A X MLSS	

Question	Enter Answers
3.1	
3.2	
3.3	

	For Graders Only	
	Answer	Points $100 / 200$
3.1	$2.0,8.5(\mathrm{x} / \mathrm{y})$	
3.2	$15.3 \mathrm{lb} / \mathrm{sf}-\mathrm{d}$	
3.3	$4.5 \mathrm{~g} / \mathrm{L}$	

3.2 Estimate the Total Solids Loading Rate (SLR)
$S L R=$ Qi/A \times MLSS + Qras $/ A \times M L S S$
$=2 \mathrm{MGD} /\left(2^{*}\right.$ pi $\left.\times(50)^{\wedge} 2 / 4\right) \times 2,000 \mathrm{mg} / \mathrm{L} \times 8.34+1.6 \mathrm{MGD} /\left(2^{*}\right.$ pi $\times(50)^{\wedge} 2 / 4 \times 2,000 \mathrm{mg} / \mathrm{L} \times 8.34$
$=8.5+6.80$
$=\quad 15.3 \mathrm{lb} / \mathrm{sf}-\mathrm{d}$
3.3 What is the predicted RAS Concentraiton? Draw the overflow and underflow lines.

Draw overflow and underflow line	
RAS concentration $=$	$4.5 \mathrm{~g} / \mathrm{L}$

Scenario Description: Actual drawings for a facility were provided to you.

Secondary treatment process consists of two (2) ATs and four (4) secondary clarifiers, with all units in service. The activated sludge system setup in Modified Ludzack-Ettinger (MLE) configuration to maximize total nitrogen (TN) removal. Each AT consists of four (4) zones (1 Anoxic, 1 Swing, and 2 Oxic). Process Air Blowers supply air/oxygen to the oxic zones via fine bubble diffusers. In the MLE mode, both the primary effluent and return activated sludge (RAS) is distributed only into the anoxic (1st) zone.

Process Scenarios \#4 - Plant Automation and P\&ID
These questions are in reference to the drawings included with the test.

Process Scenarios \#4 - Plant Automation and P\&ID

These questions are in reference to the drawings included with the test.

Process Scenarios \#4 - Plant Automation and P\&ID

These questions are in reference to the drawings included with the test.

Process Scenarios \#4 - Plant Automation and P\&ID

These questions are in reference to the drawings included with the test.

	For this scenario, Secondary Clarifiers No. 2 and No.4. are in operation. RAS Pump No. 2 is active and dedicated to For Graders Only		
	Clarifier No. 2. Isolate Clarifier No. 4 and drain it back to the two (2) oxic zones of Aeration Tank No. 1. RAS Pump	Answer	Points 50/100
	No. 4 is active and dedicated to Clarifier No. 4. Using identification tags, what gates, blowers, valves etc., would be changed in making that happen. You can list the steps along with identification number below, or mark the drawing by drawing a CIRCLE around the equipment and writing the action taken next to it. If the markings on the drawings are not ledgible to the judges, you will not receive credit.		
4	The symbol used to mark up drawings for this questions is a CIRCLE a. \quad Clarifier No. 2 in service (No changes to RAS Pump No. 2) b. \quad Clarifier No. 4 out of service and drained to AT No. 1: i. Close SG-48"X18"-818-33 and SG-48"X18"-818-34 ii. Close SG-27"X60"-812-501 and SG-27"X60"-812-502 iii. Open SG-27"X60"-812-503 and SG-27"X60"-812-504 iv. Close PV-16"-819-59 v. Open PV-16"-819-64, PV-12"-819-65, PV-12"-819-66 vi. Energize Pump No. 4 Or properly marked drawings		

