NEWEA/NYWEA Operations Challenge Process Control Event 2023

Team Name:
Team Number:
Team Captain:
Written Test points awarded:
MC points awarded:
Simulator points awarded:
Total Event Points:
Simulator Computer

Simulator - Computer

50 to 300 points per question 1000 max points available

Multiple Choice - Computer

10 to 20 points per question 450 max points available

Multiple Choice Math - Pages 2 - 6 (5)

25 total questions

40 full credit points per question

50% partial credit if math is correct but answer is incorrect

0 points is work is not shown

1000 max points available

Process Scenarios - Pages 7 - 25 (19)

19 total questions

50-100 full credit points per question

Bonus SPA question worth 500 full credit points

50% partial credit if math is correct but answer is incorrect

0 points is work is not shown

1700 max points available

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question

#	Questions	(Choices	work shown=20 points correct+work=40 points				
	A pump runs continously for 8 hours and delivers 9,350 gallons. What							
	is the capacity (pumping rate) of the pump in gallons per minute?	Α	195 gpm	correct	work?	total		
		В	19.5 gpm					
1	8 hrs * (60 min) = 480 mins 9,350 gals/480 mins = 19.5 gpm	С	21 gpm		В			
		D	30 gpm					
	The influent BOD is 231 mg/L, and the effluent BOD is 6.1 mg/L. What is the percent removal?	Α	36.9%	correct	work?	total		
2		В	93.2%					
	(231 mg/L - 6.1 mg/L)/231 mg/L = 0.974 * 100 = 97.4%	С	97.4%		С			
	(231 mg/t 0.1 mg/t//231 mg/t = 0.374 100 = 37.470	D	33.3%					
	A sewer pipe is 265 ft long and has a diameter of 10 inches. The pipe is to be treated with a root-killing chemical containing a 250 mg/L	Α	324 lbs	correct	work?	total		
3	concentration. How many pounds of chemical are needed?	В	22.3 lbs					
	10 in./12 = 0.83 ft * 0.83 ft *0.785 = 0.54 ft ² * 265 ft = 143.1 ft3 * 7.48 = 1070.4 gals 250 mg/L	С	23.4 lbs		D			
	7.48 = 1070.4 gals 250 mg/L * 0.00107 mgd * 8.34 = 2.23 lbs	D	2.23 lbs					
	A circular tank is 60 ft diameter and 12 ft deep. If the tank is completely full and an 850 gpm pump is supplied, how long will it take (in minutes) to remove 7 ft of water from the tank?	Α	298.4 min	correct	work?	total		
4	the management of the second o	В	174.1 min					
	60 ft * 60 ft * 0.785 * 7 ft = 19782 ft ³ * 7.48 = 147979.36 gals	С	124.3 min		В			
	147979.36 gals / 850 gpm = 174.1 mins	D	135.4 min					
	The sludge feed to a belt filter press is 150 gpm. If the total suspended solids concentration of the feed is 4.2%, what is the solids loading rate.	Α	53 lb/hr	correct	work?	total		
5	iodaing rate.	В	3150 lb/hr					
	TSS = 42000 mg/l Flow = 150 gpm*60min/hr = 9000 gal/hr = 0.009 MG/hr	С	5250 lb/hr		В			
	Mass loading = 0.009 MG/hr*42000mg/l*8.34 = 3152.52 lb /hr or Mass loading = 150gal/min*60min/hr*.042*8.34=3152.52 lb/hr	D	7600 lb/hr					

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question

#	Questions	work shown=20 points correct+work=40 points				
	If a 50ft diameter secondary clarifier receives a flow of 2.5 MGD with a MLSS 2500 mg/l, calculate the solids loading rate	Α	21.7 lb/d/ft2	correct	work?	total
01	on the clarifier	В	26.6 lb/d/ft2			
6	25' X 25' X 3.14 = 1962 ft2 2.5 MGD X 2500 mg/l X 8.34 = 52125 lbs/day	С	36 lb/d/ft2		В	
	52125 lbs/day / 1962 ft2 = 26.6 lb/d/ft2	D	49.5 lbd/ft2			
	Calculate the time to reduce the water level from 18 feet to 3 feet in a 30ft diameter circular tank using a 180 gpm	Α	6.5 hours	correct	work?	total
7	withdrawal rate.	В	7.3 hours			
((15' X 15' X 3.14 X (18' - 3') X 7.48 = 79269 Gal 79269 Gal / 180 GPM = 440 Min	С	8.2 hours		В	
	440 Min / 60 min/hour = 7.3 hours	D	5.5 hours			
	Calculate the average filtration rate during a 72 hour filter run for a sand filter 15 feet long and 7 feet wide that produces 2.5	Α	4.2 gpm/ft2	correct	work?	total
8	million gallons during the run.	В	4.9 gpm/ft2			
	Filter area = 15 ft*7ft = 105 ft2 Water Treated = 2500000 gal	С	5.5 gpm/ft2		С	
	Run Time = 72 hours = 4320 min Filtration rate = 2,500,000gal/4320min/105 ft2 = 5.5 gpm/ft2	D	7.3 gpm/ft2			
	The concentration of the flocculant for a belt filter press is 0.8%. If the flocculant feed rate is 3 gpm, what is the	Α	3 lb/hr	correct	work?	total
9	flocculant feed rate in lbs/hr?	В	6 lb/hr			
	Mass flocculant - 3 gal/min*60 min/hr*0.8/100* 8.34 = 12.01	С	8 lb/hr		D	
		D	12 lb/hr			
	What was the average daily flow (in MGD) for this three month period given the total monthly flows for the following months:	Α	181.4 MGD	correct	work?	total
10	March: 197.3 ft3/sec; April: 100,186.2 gpm; May: 255.7 MGD	В	192.5 MGD			
	March: 197.3 ft ³ / sec * 60 sec * 60 mins * 24 hr = 17,046,720 ft ³ /day = 127.51 MGD * 31 = 3952.81 MG April: 100,186.2 gpm * 1440 = 144.27 MGD * 30 = 4328.1 MG May: 255.7 MGD * 31 =	С	176.2 MGD		С	
	7926.7 MG (3952.81 mg + 4328.1 mg + 7926.7 mg) / 92 days = 176.17 MGD	D	170.8 MGD			

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question

#	Questions	Choices			work shown=20 points correct+work=40 points		
.,	A WWTP uses 1-ton cylinders of chlorine for disinfection. The average daily chlorine demand is 9 mg/L requiring an average daily dosage of 11 mg/L. How	A	18	correct	work?	total	
11	many cylinders will the plant need for the month of May? The average daily plant flow for the month is 12 mgd.	В	17				
	11 mg/L * 12 mgd * 8.34 = 1100.88 lbs/day 31 * 1100.88 lbs/day = 34127.28 lbs / 2000 lbs = 17.1 cylinders, so	С	19		Α		
	18.	D	21				
	A pump has an efficiency of 94% and a motor has a power factor of 0.82. If the water horsepower is 302 hp and electricity has a cost of 11.0 cents per KWH, how much will it cost to run the pump for one month (31 days) at 12	Α	\$386	correct	work?	total	
12	hrs/day?	В	\$11,961				
_ 	302 hp / 0.94 = 321.3 hp 321.3 hp / 0.82 = 391.8 hp 391.8 hp * 0.746 kW = 292.3 kW 292.3	С	\$16,032		В		
	kW * 12 hrs/day * 0.11 cents * 31 days = \$11960.92	D	\$9,808	 	, ,		
	Gived the following data, determine the excess solids in (lbs) that should be wasted from the activated sludge system given the following data: Target F:M = 0.6, MLSS = 2,500 mg/L, BOD loading =	Α	345.8 lbs	correct	work?	total	
13	1,140 lbs/day, Aeration Basin = 60 ft x 20 ft x 12 ft.	В	2245.8 lbs				
	60 ft * 20 ft * 12 ft = 14400 ft ³ * 7.48 = 107712 gals 2500 mg/L * 0.107712 mg * 8.34 = 2245. 8 lbs in system	С	1900 lbs		Α		
	1,140 lbs BOD/day / 0.6 = 1900 lbs 2245.8 lbs - 1900 lbs = 345.8 lbs to be removed	D	521.2 lbs				
	Given the following data, determine the percent volatile suspended solids of this sample given the following data: Weight of dish and day	Α	99.7%	correct	work?	total	
14	g, Weight of dish and wet sample = 53.71 g, Weight of dish and dry sample = 21.48 g, Weight of dish and ash = 21.11 g.	В	82.1%				
	((21.48 g - 21.01 g) - (21.11g - 21.01 g)) / (21.48 g - 21.01 g) =	С	65.4%	D			
	0.787 x 100 = 78.7%	D	78.7%		-		
	If a pump outputs 625 gpm against a TDH of 198 ft, and the pump is 74% efficient, what is the brake HP?	Α	42.2 HP	correct	work?	total	
15		В	41.5 HP				
	(625 gpm * 198 ft) / (3960 * 0.74) = 42.2 hp	С	44.8 HP		Α		
	(2-2 Sp20 14) (2000 - 21 4) 4212 lik	D	52.1 HP				

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question

#	Questions	(Choices	work shown=20 points correct+work=40 points			
	Given a feed sludge TSS of 3.7% to a belt filter press, a return flow TSS of 0.039%, and a Cake TS of 15%, calculate the solids recovery		96.0%	correct	work?	total	
16		В	97.2%				
	Solids Capture (%)= 15*(3.7039)*100 = 99.2%	С	98.8%		D		
	3.7*(15039)	D	99.2%				
	Calcualte the F/M for an activated sludge plant with two aeration tanks, each 92,000 gallons, primary effluent of 260 mg/l, aeration	Α	0.11 lb/d/lb	correct	work?	total	
17	tank MLSS of 1900 mg/l in each tank, volatile content of 82%, and an influent flow of 152,000 gpd.	В	0.14 lb/d/lb				
	Ib MLVSS = 2*.092MG*.82*1900*8.34 = 2390.8448 lb	С	0.17 lb/d/lb		В		
	Loading = .152MG*260mg/l*8.34 = 329.5968 lb/d F/M = 329.5968 lb/d/2332.5312lb = 0.14 lb/d/lb	D	0.2 lb/d/lb				
	Compost is to be blended from wood chips and dewatered sludge. The wood chips are mixed with 10 yd3 of dewatered sludge at a ratio (by volume) of 3:1. The solids content of the sludge is 15% and the solids content of the	Α	17%	correct	work?	total	
	wood chips is 54%. If the buld density of the sludge is 1685 lb/yd3 and 750 lb/yd3 for the wood chips, what is the percent solids content of the compost blend?	В	27%				
18	Lb Dry Sludge + Lb dry chips *100 Lb Sludge + Lb Chips	С	37%		С		
	(10*1685*.15+3*10*750*.54)*100 10*1685 + 3*10*750	D	54%				
	Flow = 186,000 gpd, Influent BOD=254 mg/l, Effluent BOD = 9 mg/l, Influent TSS=299 mg/l, Effluent TSS = 8 mg/l, Influent	Α	124.6 lb/d	correct	work?	total	
19	Nitrogen (all Ammonia) = 25 mg/l, The facility does not have primary treatment. Calculate the theoretical alkalinity	В	141.2 lb/d				
	BOD reduction = 254-9 = 245 mg/l Ammonia consumpion during BOD reduction = 5/100*245 = 12.25 mg/l	С	174.5 lb/d		Α		
	#1b Ammonia to be nitrified = (25-(12.25+1.5))*.186*8.34=17.45 lb/d Theoretical Alkalinity consumption = 17.45 * 7.14 = 124.6 lb/d	D	260.0 lb/d				
	A RBC treatments systems has two RBC's each with 100,000 ft2 of standard density media. The RBC's are operated in parallel	Α	0.605 lb/1000 ft2		work?	total	
20	for with an influent flow of 100,000 gpd, influent BOD = 240 mg/l, primary effluent BOD = 145 mg/l. For an even flow	В	1.0 lb/1000 ft2				
	slpplit, calculate the organic loading to each RBC. OLR = (50,000 gpd*145mg/l*8.34)/100(1000 ft2) = 0.605 gpd/1000ft2	С	1.2 lb/1000 ft2		Α		
		D	2.0 lb/1000 ft2				

You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

Circle the letter coresponding to the answer provided for for each question For graders use only									
#	Questions	(Choices		shown=20 p ct+work=40 p				
	If the feed rate of 0.8% flocculant cncentration is 12 lb/hr for a 4.2% sludge fed at a rate of 2700 lb/hr to a belt filter press,	Α	4.2 lb flocculant/ton sludge	correct	work?	total			
21	calculate the flocculant dose in lb flocculant/ton solids treated.	В	5.2 lb flocculant/ton sludge						
	sludge feed = 2700 lb/hr/2000 lb/ton = 1.35 ton/hr Flocullant dose = 12 lb/hr/1.35 ton sludge/hr = 8.89lb floccula	С	7.1 lb flocculant/ton sludge 8.9 lb		D				
		D	flocculant/ton sludge						
	Calculate the water horsepower for a pump to move water for an elevation change of 21.59 feet with pipe friction losses of	Α	4.3 hp	correct	work?	total			
22	1.98 ft and minor losses of 6.92 ft for a flow of 800 gpm.	В	1.8 hp						
22	Head = 21.59ft = 1.98ft = 6.92 ft = 30.49 ft WHP = 800*30.49/3960 = 6.1596hp	С	6.2 hp		С				
		D	8.2 hp						
	Calculate the pounds of air needed in an aeration tank to reduce the tank influent BOD from 145 mg/l to 15 mg/l at a flow of 1.2 MGD.	Α	7600 lb/d	correct	work?	total			
23	Assume an oxygen requirement of 1.1 lb oxygen/lb BOD and that the facility is at sea level elevation.	В	6810 lb/d						
25	lb BOD removed = 1.2*(145-15)=*8.34=1301.04 lb/d Oxygen required = 1.1 lbO2/lbBOD * 1301.04lb/d = 1431.144 lb O2/d	С	1600 lb/d		В				
	Air required = 1431.144/.21 = 6814.97 lb/d	D	1430 lb/d						
	Calculate the flow velocity in a grit channel that is 9 ft long, 18 inches wide, and 18 inches deep at a flow 200,000 gpd.	Α	0.069 ft/sc	correct	work?	total			
24		В	0.14 ft/sec						
	Area = 1.5 ft*1.5ft= 2.25 ft2 $ \frac{200,000 \frac{gal}{day}}{day} = 1 ft^3 = 1 day = 1 min = 0.130 ft $	С	0.2 ft/sec		В				
	velocity = $\frac{200,000 \frac{gal}{day}}{2.25 ft^2} * \frac{1 ft^3}{7.47 gal} * \frac{1 day}{1440 min} * \frac{1 min}{60 sec} = 0.138 \frac{ft}{sec}$	D	1.1 ft/sec						
	A alum jar test on secondary effluent using an alum test solution of 20 mg Alum/ml had an optimum dose at 1.4 ml of test solution in a 2	Α	284 lb	correct	work?	total			
25	liter test beaker. Using the results of this test, calculate the daily alum required for a flow rate of 3.4 MGD.	В	397 lb						
	Optimum dose = 1.4 ml*20 mg/ml/2 liter =14 mg/l	С	560 lb		В				
	lb Alum = 3.4 MGD *14 mg/l * 8.34 = 396.98 lb/d	D	794 lb						

You must show your work to receive full credit even if the answer is correct

Operational Data

You are designing a new Wastewater Treatment Plant that will be built with a 200 MGD design dry weather flow. The plant influent TSS is expected to average 150 mg/L. The design standards being used are as follows:

Hydraulic Loading Rate - 2000 gpd/sqft TSS Removal - 65% Number of Tanks - 8 Passes per Tank - 4 Weir Overflow Rate - 40,000 gpd/sqft Primary Tank Flow Velocity = 2 ft/min

Given the above data and that the initial settling tests indicate an average primary sludge concentration of 2500 mg/L what size pumps are needed if each tank will have a dedicated sludge pump?						
nt Loading Rate Ibs/day Ibs/day	= =	200 MGD * 250200	150 mg/L	A 400 g B 700 g C 1000 g D 1400 g	<mark>om</mark> gmp	
moved 250200 *		0.65 =	162630 lb	os/day		
e Volume Removed						
MGD	=					
MGD	=	7.8				
7.8 * 694 gpm/N	/IGD = 541	13 gpm				
5413 gpm / 8	=	676 gpm				
	nt Loading Rate Ibs/day Ibs/day moved 250200 * e Volume Removed MGD MGD 7.8 * 694 gpm/N	nt Loading Rate Ibs/day = Ibs/day = Ibs/day = moved 250200 * e Volume Removed MGD = MGD = 7.8 * 694 gpm/MGD = 541	nt Loading Rate lbs/day	lbs/day	A 400 gi B 700 gi C 1000 i D 1400 gi nt Loading Rate lbs/day = 200 MGD * 150 mg/L * 8.34 lbs/day = 250200 moved 250200 * 0.65 = 162630 lbs/day e Volume Removed MGD = 162630 2500 mg/L * 8.34 MGD = 7.8 7.8 * 694 gpm/MGD = 5413 gpm	

	Determine the minimum width of each pass if they will be 125ft long.		For G	aders Only
			Points 50/1	00 Answer
				Α
		A 25 ft		
		B 50 ft		
		C 100 f		
		D 125 f	t	
	200,000,000 gal/day = 100000 sqft			
	2000 gpd/sqft			
2	$\frac{100,000 \text{ sqft}}{8}$ = 12,500 sqft/ tank			
	12,500 sqft = 3125 sqft/ pass			
	3125 sqft = 25 ft/ pass			

	Based on the design primary tank flow velocity and width from question 3, determine the minimum average height of each tank.	For Grad Points 50/100	ers Only Answer
		·	С
	A 10 ft B 11 ft C 12 ft		
	D 14 ft 200 MGD * 1.55 cuft/s / MGD = 310 cuft/s		
3	310 cuft/s = 9300 sqft		
	9300 sqft = 11.6 ft		

Determine the length of we							For Grad	ers (
overflow rate. Draw out a part the dimensions of the draw			on your answer ar	d the design inform	ation. Be s	ure to label	Points 50/100	Aı
					A	120 ft	1	
200,000,000	gal/day				B C	140 ft 150 ft	1	
40,000 gp		=	5000 ft		D	160 ft		
	5000 ft							
_	8 * 4	=	156 ft					
Any weir lavout	that has a total	of 160 ft o	f weir so long as it	is less than 25 ft wic	le is			
acceptable since								

Influent Characteristics							
Flow:	1.2 MGD						
BOD:	225 mg/L						
TSS:	272 mg/L						
Alkalinity:	140 mg/L						
TKN:	50 mg/L						
pH:	6.8 s.u.						

MBR Plant Characteristics

Effluent Characteristics								
cBOD:	8.0 mg/L							
TSS:	2.0 mg/L							
NH3:	1.0 mg/L							
TN:	4.0 mg/L							

Permit Limits		
cBOD:	45 mg/L	
TSS:	45 mg/L	
NH3:	4.0 mg/L	
TN:	8.0 mg/L	
рН	6.9 s.u.	

Process Information:

The MBR consisit of two paralell trains that receive even flows. The membranes are hollow fiber. There are 19 membrane racks per tank and 42 membrane modules per rack. Each module in the rack has a surface area of 65 ft².

Tanks Volumes		MLSS
Anoxic:	86,830 Gallons	5,350 mg/L
Aerobic:	256,700 Gallons	5,350 mg/L
Membrane:	120,000 Gallons	7,100 mg/L
		75% volatile

B. For a SR	Γ of 10.2 days	calculate the	WAS rate.	Include th	ne mass in	⊢the MBF
Tank.						

Anoxic MLVSS = 2*.086830*8.34*.75 = 5811.401655 lb Aerobic MLVSS = 2*.2567*5350*8.34*.75=17180.54595 lb A 0.10 lb/d/lb
B 0.14 lb/d/lb
C 0.15 lb/d/lb
D 0.16 lb/d/lb

For Graders Only		
Points 25/50	Proper Answer	
	Α	

 $F/M = \frac{2251.8 \text{ lb/d}}{5811.401655 \text{lb} + 17180.54954 \text{lb}} \quad 0.098$

B. For a SRT of 10.2 days calculate the WAS rate. Anoxic MLSS = 2*.08683*5350*8.34 = 7750.32 lb Aerobic MLSS = 2*.2567*5350*8.34=22924.52 lb MBR MLSS = 2*.12*7100*8.34 = 14211.36 lb Effluent TSS = 1.2*2*i.34=20.016 lb/d

Α	2235 lb/d
В	2980 lb/d
С	3280 lb/d
D	4200 lb/d

For Graders Only	
Points 25/50	Proper Answer
	D

WAS = Anoxic+Aerobic+MBR - EFFTSS = 4206.134 lb/d

A. If the membrane module has a flux rate of 34.3 gpd/ft^2 , calculate the membrane area required for a peak daily flow of 2.7 MGD.

Flux = Q/A

Area = 2,700,000 gpd/34.3 gpd/ft² = 78,717.202 ft²

Α	35000 ft ²
В	50000 ft ²
С	78720 ft ²
D	82300 ft ²

For Graders Only	
Points 25/50	Proper Answer
	С

B. Calculate the number of membrane racks for each treatment train, if each membrane module has an area of 65 ft².

modules required = 78717.202/65 = 1211 # racks = 1211/42 = 28.8 #racks/train = 28.8/2 = 14.4 - round to 15 racks/train

Α	10
В	15
С	16
D	19

For Graders Only	
Points 25/50	Proper Answer
	В

A. Given that the nitrogen content of the volatile solids is 12 %, calculate the amount of nitrogen converted into nitrogen gas, assuming a sludge wasting rate of 4380 lb/d.

Eff N = 1.2MGD*4mg/I*8.34 = 40.032 lb/d WAS N = 4380.59lb/d*.75*.12 = lb/d Influent N = 1.2MGD*50mg/I*8.34=500.4 lb/d

lb/d N2 = 500.4 - (394.25 + 40.032) = 66.1 lb/d

Α	60 lb/d
В	66 lb/d
С	106 lb/d
D	110 lb/d

For Graders Only
Points 25/50 Proper Answer

B

B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.

N Consumed w BOD Removal = (225-8)*5/100 = 10.85 mg/l

N remaining after BOD Removal = 50-10.85 = 39.85 mg/l

Alkalinity consumed by nitrification = (39.85-1)*7.14 = 279.531 mg/l

Α	77.5 mg/l
В	260 mg/l
С	280 mg/l
D	357 mg/l

For Grad	ders Only
Points 25/50	Proper Answer
	C

A. Each membrane rack has a treated flow rate of 60 gpm and an 15 minute operating cycle. The operating cycle is 12 minutes in operation mode and 3 minutes in relaxation mode, calculate the number of gallons treated by a rack in an hour at the influent flow of 1.2 MGD.

#cycles/hour =4, # minutes operation/hour = 4*12 = 48 minutes treated water = 60 gpm*48 minutes = 2880 gallons

Α	2880 gal
В	3200 gal
С	3600 gal
D	4800 gal

For Graders Only

Points 25/50 Proper Answer

B. Each membrane rack goes through a maintenance clean every 4 days. Each maintenance clean lasts for 60 minutes. At the daily flow rate of 1.2 MGD, calculate the number of gallons of wastewater processed by each rack between each maintenance clean event. Each membrane rack has a treated flow rate of 60 gpm with a operating cycle of 12 minutes in operation mode and 3 minutes in relaxation mode.

operating cycles = 4*1440/15 = 384
min operating/cycle = 12
min treating water = 384*12 = 4608 min
Treated water = 60*4608=276480 gallons

Α	160,000 gal
В	225,000 gal
С	276,000 gal
D	326,000 gal

For Grad	ders Only
Points 25/50	Proper Answer
	С

Process Scenarios #3 - State Point Analysis

Two Part Question. You must answer both question correctly for full credit

Draw a new overflow line on the SPA diagram below to show what would happen if the influent flow increased.

Because no flow data is given, the line you draw does not have to be exact, just demonstrate that you understand the concept

For Graders Only

Answer Points 50/100

See lines in red

3

Draw a new underflow line on the SPA diagram below to show what would happen if the RAS flow increased.

Because no flow data is given, the line you draw does not have to be exact, just demonstrate that you understand the concept

Process Scenarios #3 - State Point Analysis Bonus Question 2X Points. You must get all parts correct and show your work for full credit.

Given the following W	/WTF Data:
Influent Qi	2 MGD
RAS Qras	1.6 MGD
MLSS	2000 mg/L
Clarifier Diameter	50 Ft
# of Clarifiers	2
SLR = Qi/A X MLSS + Qra	as/A X MLSS

Question	Enter Answers
3.1	
3.2	
3.3	
	Question 3.1 3.2 3.3

	For Grad	ders Only
	Answer	Points 100/200
3.1	2.0,8.5 (x/y)	
3.2	15.3 lb/sf-d	
3.3	4.5 g/L	

3.1 On the following page, draw the State Point on the blank diagram below. You must show your work for full credit.

State Point is the SLR caused by the overflow rate and the MLSS:

4

3.2 Estimate the Total Solids Loading Rate (SLR)

$$SLR = Qi/A \times MLSS + Qras/A \times MLSS$$

$$= 2 MGD/(2*pi \times (50)^2/4) \times 2,000 mg/L \times 8.34 + 1.6 MGD/(2*pi \times (50)^2/4 \times 2,000 mg/L \times 8.34$$

$$= 8.5 + 6.80$$

$$= 15.3 lb/sf-d$$

3.3 What is the predicted RAS Concentraiton? Draw the overflow and underflow lines.

Draw overflow and underflow line RAS concentration = 4.5 g/L

Scenario Description: Actual drawings for a facility were provided to you.

Secondary treatment process consists of two (2) ATs and four (4) secondary clarifiers, with all units in service. The activated sludge system setup in Modified Ludzack-Ettinger (MLE) configuration to maximize total nitrogen (TN) removal. Each AT consists of four (4) zones (1 Anoxic, 1 Swing, and 2 Oxic). Process Air Blowers supply air/oxygen to the oxic zones via fine bubble diffusers. In the MLE mode, both the primary effluent and return activated sludge (RAS) is distributed only into the anoxic (1st) zone.

Process Scenarios #4 - Plant Automation and P&ID

	Using the legend provided with the P&ID drawings, develop an identification tag for the check valve down stream	For Gra	aders Only
	of IMLR Pump Discharge into Zone 1A of Aeration Tank No. 1, using Sequence Number - 001. Assume it is a standard check valve.	Answer	Points 50/100
	CH - 24" - 812 - 001		
1			

Process Scenarios #4 - Plant Automation and P&ID

For thi	is scenario - The facility would like to increa	se nitrification treatment capacity in the Aeration Tanks, which	For Gra	aders Only
		anoxic zone. Process Air Blower No. 1 is currently in use.	Answer	Points 50/10
	•	No. 2 to be turned on as well. For Aeration Tank 1, using		
	<u> </u>	c., would be changed in making that happen. You can list the steps the drawing by drawing a SQUARE around the equipment and		
		s on the drawings are not ledgible to the judges, you will not		
receive	e credit.			
	The symbol used to mark up drawings	for this questions is a SQAURE		
	Turn Off Mixer No. 3 & No. 4			
b.	Open PA-8"-812-1 using E-MD-DN	Г-812-1101		
c.	Open BR-14"-814-19	20 Bonus Points - if they called out E-MD-DNT -		
	Energize Air Blower No. 2	812-1101 as Automatic/Actuated Operation?		
)r nro	perly marked drawings			
ριο	perly marked drawings			

Process Scenarios #4 - Plant Automation and P&ID

	For this scenario - During anticipated high flow events, contact stabilization (CS) is practiced at the facility to allow for large biomass inventory in the aeration tanks. In CS mode, RAS is distributed only to the two (2) oxic zones. The	For Gra	aders Only
	primary effluent is distributed 10%/20%/70% between the 1st anoxic, 2nd swing and the two (2) oxic (3rd and 4th)	Answer	Points 50/10
	zones. For Aeration Tank 1, using identification tags, what gates, blowers, valves etc., would be changed in making		
	this switch from MLE to CS mode happen. You can list the steps along with identification number below, or mark		
	the drawing by drawing a TRIANGLE around the equipment and writing the action taken next to it. If the markings		
	on the drawings are not ledgible to the judges, you will not receive credit.		
	^		
	The symbol used to mark up drawings for this questions is a TRIANGLE		
	a. Close SG-27"60"-812-501 and SG-27-27"60"-812-502		
	b. Open SG-27"X60"-812-503 and SG-27-27"X60"-812-504 to send RAS to the 2 Oxic Zones		
3	c. Throttle/Adjust Motorized Slide Gates 1, 2, 3 to send 10% of PE flow to the Anoxic (1st) Zone		
	d. Throttle/Adjust Motorized Slide Gates 8 to send 20% of PE flow to the Swing (2nd) Zone		
	e. Throttle/Adjust Motorized Slide Gates 13,14,19,20 to split 70% of PE flow to the 2 Oxic (3rd and 4th) Zones		
	Or properly marked drawings		

Process Scenarios #4 - Plant Automation and P&ID

	The symbol used to mark up drawings for this questions is a CIRCLE	
a.	Clarifier No. 2 in service (No changes to RAS Pump No. 2)	
b.	Clarifier No. 4 out of service and drained to AT No. 1:	
	i. Close SG-48"X18"-818-33 and SG-48"X18"-818-34	
	ii. Close SG-27"X60"-812-501 and SG-27"X60"-812-502	
	iii. Open SG-27"X60"-812-503 and SG-27"X60"-812-504	
	iv. Close PV-16"-819-59	
	v. Open PV-16"-819-64, PV-12"-819-65, PV-12"-819-66	
	vi. Energize Pump No. 4	