## NEWEA/NYWEA Operations Challenge Process Control Event 2023

Team Name:

Team Number:

Team Captain:

Written Test points awarded:

MC points awarded:

Simulator points awarded:

Total Event Points:

Simulator - Computer

50 to 300 points per question 1000 max points available

Multiple Choice - Computer

10 to 20 points per question

450 max points available

#### Multiple Choice Math - Pages 2 - 6 (5)

25 total questions

40 full credit points per question

50% partial credit if math is correct but answer is incorrect

0 points is work is not shown

1000 max points available

#### Process Scenarios - Pages 7 - 25 (19)

19 total questions

50-100 full credit points per question

Bonus SPA question worth 500 full credit points

50% partial credit if math is correct but answer is incorrect

0 points is work is not shown

1700 max points available

#### You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

| Circle | Circle the letter coresponding to the answer provided for for each question                                                                                                                       |   |            |                                  |       | For graders use only |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|----------------------------------|-------|----------------------|--|--|--|
| #      | Questions                                                                                                                                                                                         | C | Choices    | work shown=20<br>correct+work=40 |       |                      |  |  |  |
|        | A pump runs continously for 8 hours and delivers 9,350 gallons. What is the capacity (pumping rate) of the pump in gallons per minute?                                                            | Α | 195 gpm    | correct                          | work? | total                |  |  |  |
| 1      |                                                                                                                                                                                                   | В | 19.5 gpm   |                                  |       |                      |  |  |  |
| -      |                                                                                                                                                                                                   | С | 21 gpm     |                                  |       |                      |  |  |  |
|        |                                                                                                                                                                                                   | D | 30 gpm     |                                  |       |                      |  |  |  |
|        | The influent BOD is 231 mg/L, and the effluent BOD is 6.1 mg/L. What is the percent removal?                                                                                                      | Α | 36.9%      | correct                          | work? | total                |  |  |  |
| 2      |                                                                                                                                                                                                   | В | 93.2%      |                                  |       |                      |  |  |  |
| -      |                                                                                                                                                                                                   | С | 97.4%      |                                  |       |                      |  |  |  |
|        |                                                                                                                                                                                                   | D | 33.3%      |                                  |       |                      |  |  |  |
|        | A sewer pipe is 265 ft long and has a diameter of 10 inches. The pipe<br>is to be treated with a root-killing chemical containing a 250 mg/L                                                      | Α | 324 lbs    | correct                          | work? | total                |  |  |  |
| 3      | concentration. How many pounds of chemical are needed?                                                                                                                                            | В | 22.3 lbs   |                                  |       |                      |  |  |  |
| 5      |                                                                                                                                                                                                   | С | 23.4 lbs   |                                  |       |                      |  |  |  |
|        |                                                                                                                                                                                                   | D | 2.23 lbs   |                                  |       |                      |  |  |  |
|        | A circular tank is 60 ft diameter and 12 ft deep. If the tank is<br>completely full and an 850 gpm pump is supplied, how long will it take<br>(in minutes) to remove 7 ft of water from the tank? | Α | 298.4 min  | correct                          | work? | total                |  |  |  |
| 4      |                                                                                                                                                                                                   | В | 174.1 min  |                                  |       |                      |  |  |  |
| 4      |                                                                                                                                                                                                   | С | 124.3 min  |                                  |       |                      |  |  |  |
|        |                                                                                                                                                                                                   | D | 135.4 min  |                                  |       |                      |  |  |  |
|        | The sludge feed to a belt filter press is 150 gpm. If the total suspended solids concentration of the feed is 4.2%, what is the solids loading rate.                                              | Α | 53 lb/hr   | correct                          | work? | total                |  |  |  |
| F      |                                                                                                                                                                                                   | В | 3150 lb/hr |                                  |       |                      |  |  |  |
| 5      |                                                                                                                                                                                                   | С | 5250 lb/hr |                                  |       |                      |  |  |  |
|        |                                                                                                                                                                                                   | D | 7600 lb/hr |                                  |       |                      |  |  |  |

#### You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

|    | the letter coresponding to the answer provided for for each question                                                               |   |               | _       | ers use onl                | -     |
|----|------------------------------------------------------------------------------------------------------------------------------------|---|---------------|---------|----------------------------|-------|
| #  | Questions                                                                                                                          | ( | Choices       |         | snown=20 p<br>ct+work=40 ہ |       |
|    | If a 50ft diameter secondary clarifier receives a flow of 2.5<br>MGD with a MLSS 2500 mg/l, calculate the solids loading rate      | Α | 21.7 lb/d/ft2 | correct | work?                      | total |
| 6  | on the clarifier                                                                                                                   | В | 26.6 lb/d/ft2 |         |                            |       |
| •  |                                                                                                                                    | С | 36 lb/d/ft2   |         |                            |       |
|    |                                                                                                                                    | D | 49.5 lbd/ft2  |         |                            |       |
|    | Calculate the time to reduce the water level from 18 feet to 3 feet in a 30ft diameter circular tank using a 180 gpm               | Α | 6.5 hours     | correct | work?                      | total |
| 7  | withdrawal rate.                                                                                                                   | В | 7.3 hours     |         |                            |       |
| -  |                                                                                                                                    | С | 8.2 hours     |         |                            |       |
|    |                                                                                                                                    | D | 5.5 hours     |         |                            |       |
|    | Calculate the average filtration rate during a 72 hour filter run for a sand filter 15 feet long and 7 feet wide that produces 2.5 | Α | 4.2 gpm/ft2   | correct | work?                      | total |
| 8  | million gallons during the run.                                                                                                    | В | 4.9 gpm/ft2   |         |                            |       |
| U  | Б                                                                                                                                  | С | 5.5 gpm/ft2   |         |                            |       |
|    |                                                                                                                                    | D | 7.3 gpm/ft2   |         |                            |       |
|    | The concentration of the flocculant for a belt filter press is 0.8%. If the flocculant feed rate is 3 gpm, what is the             | Α | 3 lb/hr       | correct | work?                      | total |
| 9  | flocculant feed rate in lbs/hr?                                                                                                    | В | 6 lb/hr       |         |                            |       |
| 5  |                                                                                                                                    | С | 8 lb/hr       |         |                            |       |
|    |                                                                                                                                    | D | 12 lb/hr      |         |                            |       |
|    | What was the average daily flow (in MGD) for this three month period given the total monthly flows for the following months:       | Α | 181.4 MGD     | correct | work?                      | total |
| 10 | March: 197.3 ft3/sec; April: 100,186.2 gpm; May: 255.7 MGD                                                                         | В | 192.5 MGD     |         |                            |       |
| 10 |                                                                                                                                    | С | 176.2 MGD     |         |                            |       |
|    |                                                                                                                                    | D | 170.8 MGD     |         |                            |       |

# You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

| urcle | the letter coresponding to the answer provided for for each que                                                                                                                                                                       | For graders use only<br>work shown=20 points |            |         |                            |       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|---------|----------------------------|-------|
| ŧ     | Questions                                                                                                                                                                                                                             | C                                            | Choices    |         | shown=20 p<br>ct+work=40 j |       |
|       | A WWTP uses 1-ton cylinders of chlorine for disinfection. The average daily chlorine demand is 9 mg/L requiring an average daily dosage of 11 mg/L. How many cylinders will the plant need for the month of May? The average daily    | Α                                            | 18         | correct |                            | total |
| 11    | plant flow for the month is 12 mgd.                                                                                                                                                                                                   |                                              | 17         |         |                            |       |
|       |                                                                                                                                                                                                                                       |                                              | 19         |         |                            |       |
|       |                                                                                                                                                                                                                                       | D                                            | 21         |         |                            |       |
|       | A pump has an efficiency of 94% and a motor has a power factor of 0.82. If<br>the water horsepower is 302 hp and electricity has a cost of 11.0 cents per<br>KWH, how much will it cost to run the pump for one month (31 days) at 12 | Α                                            | \$386      | correct | work?                      | tota  |
| 12    | hrs/day?                                                                                                                                                                                                                              | В                                            | \$11,961   |         |                            |       |
|       |                                                                                                                                                                                                                                       | С                                            | \$16,032   |         |                            |       |
|       |                                                                                                                                                                                                                                       | D                                            | \$9,808    |         |                            |       |
|       | Gived the following data, determine the excess solids in (lbs) that<br>should be wasted from the activated sludge system given the<br>following data: Target E:M = $0.6$ MLSS = $2.500$ mg/L BOD loading =                            | Α                                            | 345.8 lbs  | correct | work?                      | tota  |
| 13    | following data: Target F:M = 0.6, MLSS = 2,500 mg/L, BOD loading = 1,140 lbs/day, Aeration Basin = 60 ft x 20 ft x 12 ft.                                                                                                             | В                                            | 2245.8 lbs |         |                            |       |
| 15    |                                                                                                                                                                                                                                       | С                                            | 1900 lbs   |         |                            |       |
|       |                                                                                                                                                                                                                                       | D                                            | 521.2 lbs  |         |                            |       |
|       | Given the following data, determine the percent volatile suspended solids of this sample given the following data: Weight of dish = 21.01                                                                                             | Α                                            | 99.7%      | correct | work?                      | tota  |
| 14    | g, Weight of dish and wet sample = 53.71 g, Weight of dish and dry sample = 21.48 g, Weight of dish and ash = 21.11 g.                                                                                                                | В                                            | 82.1%      |         |                            |       |
|       |                                                                                                                                                                                                                                       | С                                            | 65.4%      |         |                            |       |
|       |                                                                                                                                                                                                                                       | D                                            | 78.7%      |         |                            |       |
|       | If a pump outputs 625 gpm against a TDH of 198 ft, and the pump is 74% efficient, what is the brake HP?                                                                                                                               | Α                                            | 42.2 HP    | correct | work?                      | tota  |
| 15    |                                                                                                                                                                                                                                       | В                                            | 41.5 HP    |         |                            |       |
| 10    |                                                                                                                                                                                                                                       | С                                            | 44.8 HP    |         |                            |       |
|       |                                                                                                                                                                                                                                       | D                                            | 52.1 HP    |         |                            |       |

# You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

| Circle | the letter coresponding to the answer provided for for each que                                                                                                                                                              | For graders use only |                      |         |                           |       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------|---------------------------|-------|
| #      | Questions                                                                                                                                                                                                                    | C                    | Choices              |         | shown=20 p<br>t+work=40 p |       |
|        | Given a feed sludge TSS of 3.7% to a belt filter press, a return flow TSS of 0.039%, and a Cake TS of 15%, calculate the solids recovery                                                                                     | Α                    | 96.0%                | correct | work?                     | total |
| 16     |                                                                                                                                                                                                                              | В                    | 97.2%                |         |                           |       |
|        |                                                                                                                                                                                                                              | С                    | 98.8%                |         |                           |       |
|        |                                                                                                                                                                                                                              | D                    | 99.2%                |         |                           |       |
|        | Calcualte the F/M for an activated sludge plant with two aeration tanks, each 92,000 gallons, primary effluent of 260 mg/l, aeration                                                                                         | Α                    | 0.11 lb/d/lb         | correct | work?                     | total |
| 17     | tank MLSS of 1900 mg/l in each tank, volatile content of 82%, and an influent flow of 152,000 gpd.                                                                                                                           | В                    | 0.14 lb/d/lb         |         |                           |       |
| 1/     |                                                                                                                                                                                                                              | С                    | 0.17 lb/d/lb         |         |                           |       |
|        |                                                                                                                                                                                                                              | D                    | 0.2 lb/d/lb          |         |                           |       |
|        | Compost is to be blended from wood chips and dewatered sludge. The wood chips are mixed with 10 yd3 of dewatered sludge at a ratio (by volume) of 3:1. The solids content of the sludge is 15% and the solids content of the | Α                    | 17%                  | correct | work?                     | total |
| 18     | wood chips is 54%. If the buld density of the sludge is 1685 lb/yd3 and 750 lb/yd3 for the wood chips, what is the percent solids content of the compost blend?                                                              | В                    | 27%                  |         |                           |       |
|        |                                                                                                                                                                                                                              | С                    | 37%                  |         |                           |       |
|        |                                                                                                                                                                                                                              | D                    | 54%                  |         |                           |       |
|        | Flow = 186,000 gpd, Influent BOD=254 mg/l, Effluent BOD = 9<br>mg/l, Influent TSS=299 mg/l, Effluent TSS = 8 mg/l, Influent                                                                                                  | Α                    | 124.6 lb/d           | correct | work?                     | total |
| 19     | Nitrogen (all Ammonia) = 25 mg/l, The facility does not have primary treatment. Calculate the theoretical alkalinity                                                                                                         | В                    | 141.2 lb/d           |         |                           |       |
|        |                                                                                                                                                                                                                              | С                    | 174.5 lb/d           |         |                           |       |
|        |                                                                                                                                                                                                                              | D                    | 260.0 lb/d           |         |                           |       |
|        | A RBC treatments systems has two RBC's each with 100,000 ft2 of standard density media. The RBC's are operated in parallel                                                                                                   | Α                    | 0.605<br>lb/1000 ft2 | correct | work?                     | total |
| 20     | for with an influent flow of 100,000 gpd, influent BOD = 240 mg/l, primary effluent BOD = 145 mg/l. For an even flow                                                                                                         | В                    | 1.0 lb/1000<br>ft2   |         |                           |       |
|        | slpplit, calculate the organic loading to each RBC.                                                                                                                                                                          | С                    | 1.2 lb/1000<br>ft2   |         |                           |       |
|        |                                                                                                                                                                                                                              | D                    | 2.0 lb/1000<br>ft2   |         |                           |       |

# You must show your work(i.e Formulas, intermediate calculations, etc.) to receive full credit even if the answer is correct.

| Circle | the letter coresponding to the answer provided for for each que                                                                                                                                            | For grade | rs use onl                                   | У       |                            |       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------|---------|----------------------------|-------|
| #      | Questions                                                                                                                                                                                                  | (         | Choices                                      |         | shown=20 p<br>ct+work=40 j |       |
|        | If the feed rate of 0.8% flocculant cncentration is 12 lb/hr for a 4.2% sludge fed at a rate of 2700 lb/hr to a belt filter press, calculate the flocculant dose in lb flocculant/ton solids treated.      | A         | 4.2 lb<br>flocculant/ton<br>sludge<br>5.2 lb | correct | work?                      | total |
| 21     |                                                                                                                                                                                                            |           | flocculant/ton<br>sludge<br>7.1 lb           |         |                            |       |
|        |                                                                                                                                                                                                            | С         | flocculant/ton<br>sludge<br>8.9 lb           |         |                            |       |
|        |                                                                                                                                                                                                            | D         | flocculant/ton<br>sludge                     |         |                            |       |
|        | Calculate the water horsepower for a pump to move water for<br>an elevation change of 21.59 feet with pipe friction losses of                                                                              | Α         | 4.3 hp                                       | correct | work?                      | total |
| 22     | 1.98 ft and minor losses of 6.92 ft for a flow of 800 gpm.                                                                                                                                                 | В         | 1.8 hp                                       |         |                            |       |
|        |                                                                                                                                                                                                            | С         | 6.2 hp                                       |         |                            |       |
|        |                                                                                                                                                                                                            | D         | 8.2 hp                                       |         |                            |       |
|        | Calculate the pounds of air needed in an aeration tank to reduce the tank influent BOD from 145 mg/l to 15 mg/l at a flow of 1.2 MGD.<br>Assume an oxygen requirement of 1.1 lb oxygen/lb BOD and that the |           | 7600 lb/d                                    | correct | work?                      | total |
| 23     | facility is at sea level elevation.                                                                                                                                                                        | В         | 6810 lb/d                                    |         |                            |       |
| 20     |                                                                                                                                                                                                            |           | 1600 lb/d                                    |         |                            |       |
|        |                                                                                                                                                                                                            | D         | 1430 lb/d                                    |         |                            |       |
|        | Calculate the flow velocity in a grit channel that is 9 ft long, 18 inches wide, and 18 inches deep at a flow 200,000 gpd.                                                                                 | Α         | 0.069 ft/sc                                  | correct | work?                      | total |
| 24     |                                                                                                                                                                                                            | В         | 0.14 ft/sec                                  |         |                            |       |
|        |                                                                                                                                                                                                            | С         | 0.2 ft/sec                                   |         |                            |       |
|        |                                                                                                                                                                                                            | D         | 1.1 ft/sec                                   |         |                            |       |
|        | A alum jar test on secondary effluent using an alum test solution of 20 mg Alum/ml had an optimum dose at 1.4 ml of test solution in a 2                                                                   | Α         | 284 lb                                       | correct | work?                      | total |
| 25     | liter test beaker. Using the results of this test, calculate the daily alum required for a flow rate of 3.4 MGD.                                                                                           | В         | 397 lb                                       |         |                            |       |
|        |                                                                                                                                                                                                            | С         | 560 lb                                       |         |                            |       |
|        |                                                                                                                                                                                                            | D         | 794 lb                                       |         |                            |       |

You must show your work to receive full credit even if the answer is correct

#### **Operational Data**

You are designing a new Wastewater Treatment Plant that will be built with a 200 MGD design dry weather flow. The plant influent TSS is expected to average 150 mg/L. The design standards being used are as follows:

Hydraulic Loading Rate - 2000 gpd/sqft TSS Removal - 65% Number of Tanks - 8 Passes per Tank - 4 Weir Overflow Rate - 40,000 gpd/sqft Primary Tank Flow Velocity = 2 ft/min

|   | Given the above data and that the initial settling tests indicate an average primary sludge con | centration | n of 2500 mg/L | For Grad      | ers Only |
|---|-------------------------------------------------------------------------------------------------|------------|----------------|---------------|----------|
|   | what size pumps are needed if each tank will have a dedicated sludge pump?                      |            |                | Points 50/100 | Answer   |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 | А          | 400 gpm        |               |          |
|   |                                                                                                 | В          | 700 gpm        |               |          |
|   |                                                                                                 | C          | 1000 gmp       |               |          |
|   |                                                                                                 | D          | 1400 gpm       |               |          |
|   |                                                                                                 | 5          | 100 8011       |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
| 1 |                                                                                                 |            |                |               |          |
| Ŧ |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |
|   |                                                                                                 |            |                |               |          |

|   | Determine the minimum width of each pass if they will be 125ft long. |   |        | For Grad      | ers Only |
|---|----------------------------------------------------------------------|---|--------|---------------|----------|
|   |                                                                      |   |        | Points 50/100 | Answer   |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      | А | 25 ft  |               |          |
|   |                                                                      | В | 50 ft  |               |          |
|   |                                                                      | С | 100 ft |               |          |
|   |                                                                      | D | 125 ft |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
| 2 |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        |               |          |
|   |                                                                      |   |        | J             |          |

| Based on the des | Based on the design primary tank flow velocity and width from question 3, determine the minimum average height of |               |        |
|------------------|-------------------------------------------------------------------------------------------------------------------|---------------|--------|
| each tank.       |                                                                                                                   | Points 50/100 | Answei |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  | A 10 ft                                                                                                           | <b>_</b>      |        |
|                  | B 11 ft                                                                                                           |               |        |
|                  | C 12 ft                                                                                                           |               |        |
|                  | D 14 ft                                                                                                           |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |
|                  |                                                                                                                   |               |        |

|   | Determine the length of weir needed for each pass based on the design dry weather flow and the design weir |   |        | For Graders Only |        |  |
|---|------------------------------------------------------------------------------------------------------------|---|--------|------------------|--------|--|
|   | overflow rate. Draw out a possible weir layout based on your answer and the design informa                 |   |        | Points 50/100    | Answer |  |
|   | the dimensions of the drawings for full credit.                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   | -      |                  |        |  |
|   |                                                                                                            | A | 120 ft |                  |        |  |
|   |                                                                                                            | В | 140 ft |                  |        |  |
|   |                                                                                                            | С | 150 ft | -                |        |  |
|   |                                                                                                            | D | 160 ft | 4                |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
| 4 |                                                                                                            |   |        |                  |        |  |
| - |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |
|   |                                                                                                            |   |        |                  |        |  |

#### Process Scenario #2: MBR

| Influent Characteristics |          |  |  |  |
|--------------------------|----------|--|--|--|
| Flow:                    | 1.2 MGD  |  |  |  |
| BOD:                     | 225 mg/L |  |  |  |
| TSS:                     | 272 mg/L |  |  |  |
| Alkalinity:              | 140 mg/L |  |  |  |
| TKN:                     | 50 mg/L  |  |  |  |
| pH:                      | 6.8 s.u. |  |  |  |

|            | MBR Plai        | nt Cha |
|------------|-----------------|--------|
| Effluent C | Characteristics |        |
| cBOD:      | 8.0 mg/L        |        |
| TSS:       | 2.0 mg/L        |        |
| NH3:       | 1.0 mg/L        |        |
| TN:        | 4.0 mg/L        |        |
|            |                 |        |

| haracteristics |       |          |  |  |  |
|----------------|-------|----------|--|--|--|
| Permit Limits  |       |          |  |  |  |
|                | cBOD: | 45 mg/L  |  |  |  |
|                | TSS:  | 45 mg/L  |  |  |  |
|                | NH3:  | 4.0 mg/L |  |  |  |
|                | TN:   | 8.0 mg/L |  |  |  |
|                | pН    | 6.9 s.u. |  |  |  |

#### **Process Information:**

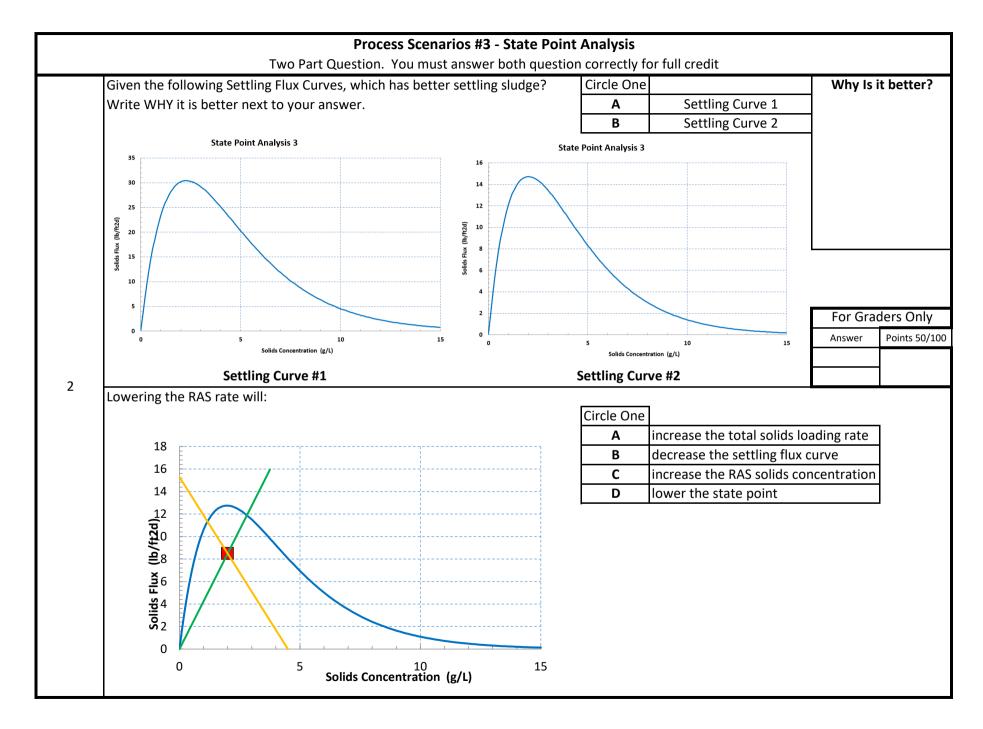
The MBR consisit of two paralell trains that receive even flows. The membranes are hollow fiber. There are 19 membrane racks per tank and 42 membrane modules per rack. Each module in the rack has a surface area of 65 ft<sup>2</sup>.

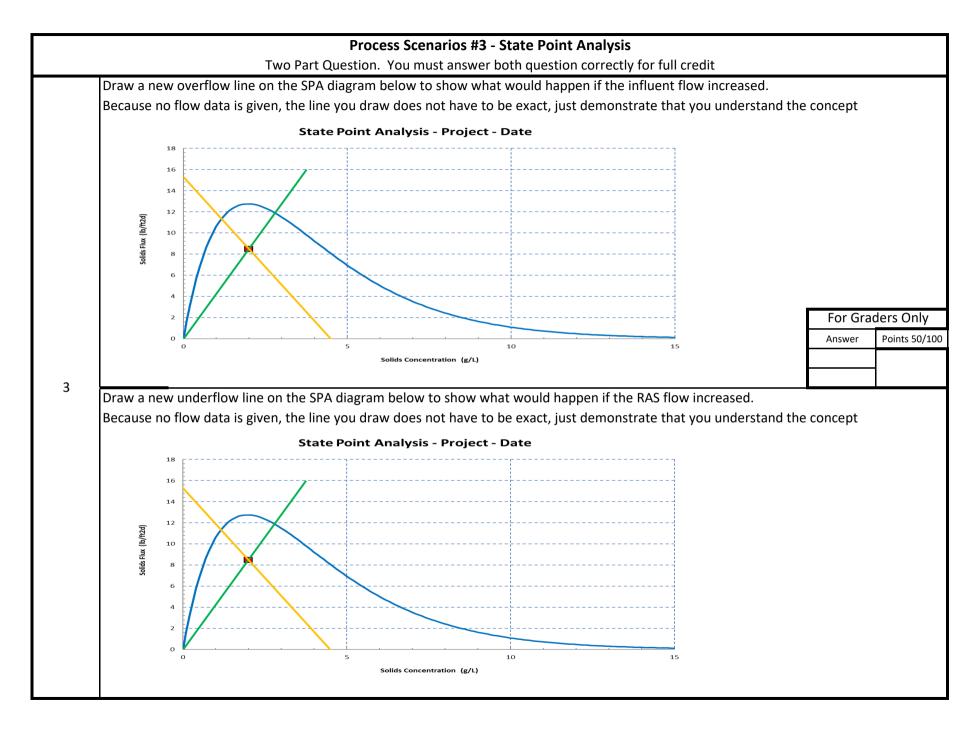
| Та        | nks Volumes     | MLSS         |
|-----------|-----------------|--------------|
| Anoxic:   | 86,830 Gallons  | 5,350 mg/L   |
| Aerobic:  | 256,700 Gallons | 5,350 mg/L   |
| Membrane: | 120,000 Gallons | 7,100 mg/L   |
|           |                 | 75% volatile |
|           |                 |              |

Process Scenario #2: MBR

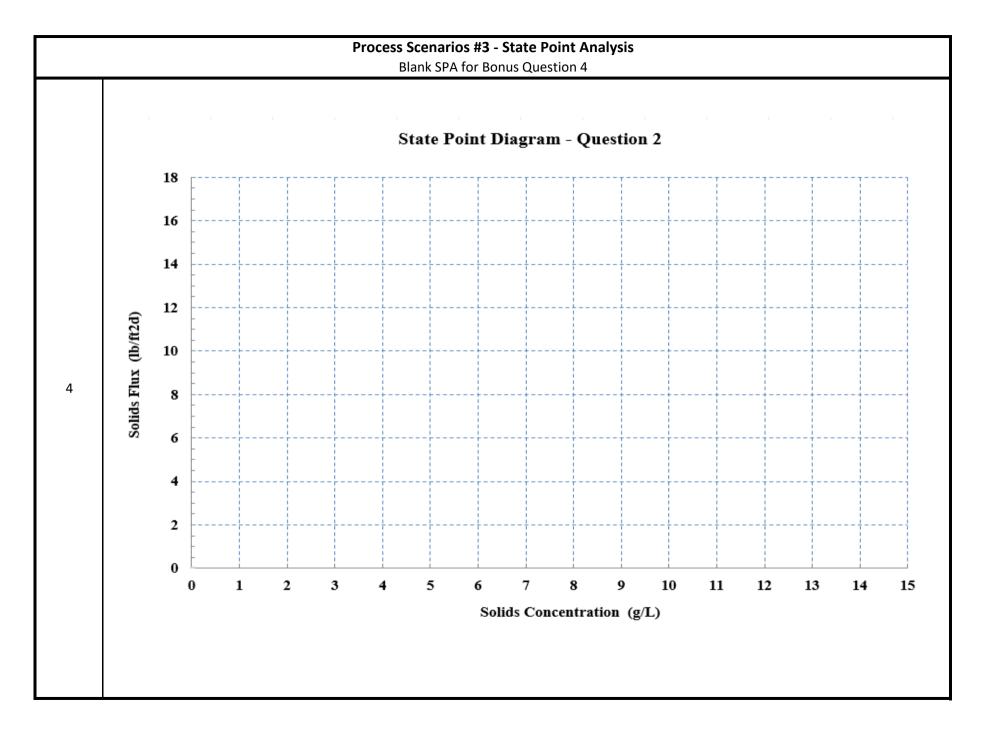
|   | A. Calculate the Food/Microorganism ratio. Ignore the mass in the MBR Tank.         | Α      | 0.10 lb/d/lb           | For        | Graders Only                     |
|---|-------------------------------------------------------------------------------------|--------|------------------------|------------|----------------------------------|
|   |                                                                                     | В      | 0.14 lb/d/lb           | Points 25/ | 50 Proper Answer                 |
|   |                                                                                     | С      | 0.15 lb/d/lb           |            |                                  |
|   |                                                                                     | D      | 0.16 lb/d/lb           |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
| 1 | D. Fan a ODT of 40.0 down a claudate the MAAO water in claude the magnetic the MDD  |        |                        | Гал        | Oredare Orth                     |
|   | B. For a SRT of 10.2 days calculate the WAS rate. Include the mass in the MBR Tank. | A<br>B | 2235 lb/d              | Points 25/ | Graders Only<br>50 Proper Answer |
|   |                                                                                     | C B    | 2980 lb/d<br>3280 lb/d | Points 25/ |                                  |
|   |                                                                                     | D      | 4200 lb/d              |            |                                  |
|   |                                                                                     |        | 4200 15/0              |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |
|   |                                                                                     |        |                        |            |                                  |

Process Scenario #2: MBR


| A. If the membrane mod                                  | ule has a flux rate of 34.3 | gpd/ft <sup>2</sup> , calculate the membr | ane area reo                    | quired for a                         | For Gra                 | iders Only                  |
|---------------------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------|--------------------------------------|-------------------------|-----------------------------|
| peak daily flow of 2.7 MC                               | GD.                         |                                           |                                 |                                      | Points 25/50            | Proper Answer               |
|                                                         |                             |                                           |                                 |                                      |                         |                             |
|                                                         |                             |                                           | Α                               | 35000 ft <sup>2</sup>                |                         |                             |
|                                                         |                             |                                           | В                               | 50000 ft <sup>2</sup>                |                         |                             |
|                                                         |                             |                                           | С                               | 78720 ft <sup>2</sup>                |                         |                             |
|                                                         |                             |                                           | D                               | 82300 ft <sup>2</sup>                |                         |                             |
| B. Calculate the number<br>area of 65 ft <sup>2</sup> . | of membrane racks for ea    | ach treatment train, if each m            | nembrane ma<br>A<br>B<br>C<br>D | odule has an<br>10<br>15<br>16<br>19 | For Gra<br>Points 25/50 | Iders Only<br>Proper Answer |


| A. Given that the nitrogen content of the volatile solids is 12 %, calculate the amount of nitrogen converted into nitrogen gas, assuming a sludge wasting rate of 4380 lb/d.       For Graders Only         A       60 lb/d       B       66 lb/d       C       106 lb/d       D       110 lb/d         B       C       106 lb/d       D       110 lb/d       D       110 lb/d       For Graders Only         B       C       106 lb/d       D       110 lb/d       D       110 lb/d       D         B       C       C       Influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.       For Graders Only | nswei |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| A 60 lb/d     B 66 lb/d     D 110 lb/d      B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                             | nswei |
| B 66 lb/d<br>C 106 lb/d<br>D 110 lb/d<br>B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the<br>influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                          |       |
| <ul> <li>3 B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| D       110 lb/d         B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| <ul> <li>B. Calculate the theoretical alkalinity consumption in the aerobic zone during nitrification. Assume all the influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| <sup>3</sup> influent TKN is converted to Ammonia and nitrification. Ignore recycle streams and assume that<br>nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| nitrification in the aerobic zone reduces the ammonia to 1 mg/l following BOD removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| For Graders Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| A 77.5 mg/l Proper Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ıswer |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| B 260 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| C 280 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| D 357 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |

| Pro | ocess Scenario #2: MBR                                                                                      |              |               |
|-----|-------------------------------------------------------------------------------------------------------------|--------------|---------------|
|     | A. Each membrane rack has a treated flow rate of 60 gpm and an 15 minute operating cycle. The               | For Grad     | ders Only     |
|     | operating cycle is 12 minutes in operation mode and 3 minutes in relaxation mode, calculate the number      | Points 25/50 | Proper Answer |
|     | of gallons treated by a rack in an hour at the influent flow of 1.2 MGD.                                    |              |               |
|     | A 2880 gal<br>B 3200 gal                                                                                    |              |               |
|     | <u>~</u>                                                                                                    |              |               |
|     | C 3600 gal                                                                                                  |              |               |
|     | D 4800 gal                                                                                                  |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     | B. Each membrane rack goes through a maintenance clean every 4 days. Each maintenance clean lasts for 60    | For Gra      | ders Only     |
| 4   |                                                                                                             | Points 25/50 | Proper Answer |
| -   | between each maintenance clean event. Each membrane rack has a treated flow rate of 60 gpm with a operating |              |               |
|     | cycle of 12 minutes in operation mode and 3 minutes in relaxation mode.                                     |              |               |
|     | A 160,000 gal                                                                                               |              |               |
|     | B 225,000 gal<br>C 276,000 gal                                                                              |              |               |
|     |                                                                                                             |              |               |
|     | D 326,000 gal                                                                                               |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |
|     |                                                                                                             |              |               |




#### **Process Scenarios #3 - State Point Analysis**





|   |                       |                            | ocess Scenarios #3 - Sta |                              |                     |           |               |
|---|-----------------------|----------------------------|--------------------------|------------------------------|---------------------|-----------|---------------|
|   |                       |                            | . You must get all parts | correct and show your work f | or full credit.     |           |               |
|   | Given the following   |                            |                          |                              |                     | For Gra   | aders Only    |
|   | Influent Qi           | 2 MGD                      | Question                 | Enter Answers                |                     | Answer    | Points 100/20 |
|   | RAS Qras              | 1.6 MGD                    | 3.1                      |                              | 3.1                 |           |               |
|   | MLSS                  | 2000 mg/L                  | 3.2                      |                              | 3.2                 |           |               |
|   | Clarifier Diameter    | 50 Ft                      | 3.3                      |                              | 3.3                 |           |               |
|   | # of Clarifiers       | 2                          |                          |                              |                     |           |               |
|   | SLR = Qi/A X MLSS + 0 | Qras/A X MLSS              |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   | 3.1 On the f          | ollowing page, draw the    | State Point on the blank | diagram below. You must sho  | w your work for ful | l credit. |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
| 4 | 3.2 Estimate          | e the Total Solids Loading | Rate (SLR)               |                              |                     |           |               |
|   | 5.2 Estimate          |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   | 3.3 What is           | the predicted RAS Conce    | entraiton? Draw the over | flow and underflow lines.    |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |
|   |                       |                            |                          |                              |                     |           |               |



Scenario Description: Actual drawings for a facility were provided to you.

Secondary treatment process consists of two (2) ATs and four (4) secondary clarifiers, with all units in service. The activated sludge system setup in Modified Ludzack-Ettinger (MLE) configuration to maximize total nitrogen (TN) removal. Each AT consists of four (4) zones (1 Anoxic, 1 Swing, and 2 Oxic). Process Air Blowers supply air/oxygen to the oxic zones via fine bubble diffusers. In the MLE mode, both the primary effluent and return activated sludge (RAS) is distributed only into the anoxic (1st) zone.

#### Process Scenarios #4 - Plant Automation and P&ID

#### These questions are in reference to the drawings included with the test.

|   | Using the legend provided with the P&ID drawings, develop an identification tag for the check valve down stream            | For Gra | ders Only     |
|---|----------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|   | of IMLR Pump Discharge into Zone 1A of Aeration Tank No. 1, using Sequence Number - 001. Assume it is a standard sharkwake | Answer  | Points 50/100 |
|   | standard check valve.                                                                                                      |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
| 1 |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            |         |               |
|   |                                                                                                                            | 1       |               |

#### **Process Scenarios #4 - Plant Automation and P&ID** These questions are in reference to the drawings included with the test.

|   | For this scenario - The facility would like to increase nitrification treatment capacity in the Aeration Tanks, which                                                                                                             | For Gra | ders Only     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|   | requires aerating the swing zone that follows the anoxic zone. Process Air Blower No. 1 is currently in use.                                                                                                                      | Answer  | Points 50/100 |
|   | Additional air requirements will need Air Blower No. 2 to be turned on as well. For Aeration Tank 1, using                                                                                                                        |         |               |
|   | identification tags, what gates, blowers, valves etc., would be changed in making that happen. You can list the steps<br>along with identification number below, or mark the drawing by drawing a SQUARE around the equipment and |         |               |
|   | writing the action taken next to it. If the markings on the drawings are not ledgible to the judges, you will not                                                                                                                 |         |               |
|   | receive credit.                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   | The symbol used to mark up drawings for this questions is a SQAURE                                                                                                                                                                |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
| 2 |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |
|   |                                                                                                                                                                                                                                   |         |               |

### **Process Scenarios #4 - Plant Automation and P&ID** These questions are in reference to the drawings included with the test.

|   | For this scenario - During anticipated high flow events, contact stabilization (CS) is practiced at the facility to allow for large biomass inventory in the aeration tanks. In CS mode, RAS is distributed only to the two (2) oxic zones. The | For Gra | aders Only    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|   | primary effluent is distrubuted 10%/20%/70% between the 1st anoxic, 2nd swing and the two (2) oxic (3rd and 4th)                                                                                                                                |         |               |
|   | zones. For Aeration Tank 1, using identification tags, what gates, blowers, valves etc., would be changed in making                                                                                                                             | Answer  | Points 50/100 |
|   | this switch from MLE to CS mode happen. You can list the steps along with identification number below, or mark                                                                                                                                  |         |               |
|   | the drawing by drawing a TRIANGLE around the equipment and writing the action taken next to it. If the markings                                                                                                                                 |         |               |
|   | on the drawings are not ledgible to the judges, you will not receive credit.                                                                                                                                                                    |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   | The symbol used to mark up drawings for this questions is a TRIANGLE                                                                                                                                                                            |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
| 3 |                                                                                                                                                                                                                                                 |         |               |
| 0 |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |
|   |                                                                                                                                                                                                                                                 |         |               |

#### Process Scenarios #4 - Plant Automation and P&ID

These questions are in reference to the drawings included with the test.

|   | For this scenario, Secondary Clarifiers No.2 and No.4. are in operation. RAS Pump No. 2 is active and dedicated to      | For Gra | aders Only    |
|---|-------------------------------------------------------------------------------------------------------------------------|---------|---------------|
|   | Clarifier No. 2. Isolate Clarifier No. 4 and drain it back to the two (2) oxic zones of Aeration Tank No. 1. RAS Pump   | Answer  | Points 50/100 |
|   | No. 4 is active and dedicated to Clarifier No. 4. Using identification tags, what gates, blowers, valves etc., would be |         |               |
|   | changed in making that happen. You can list the steps along with identification number below, or mark the drawing       |         |               |
|   | by drawing a CIRCLE around the equipment and writing the action taken next to it. If the markings on the drawings       |         |               |
|   | are not ledgible to the judges, you will not receive credit.                                                            |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   | The symbol used to mark up drawings for this questions is a CIRCLE                                                      |         |               |
|   | The symbol used to mark up drawings for this questions is a CIRCLE                                                      |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
| 4 |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |
|   |                                                                                                                         |         |               |

## NEWEA/NYWEA Operations Challenge Process Control Event 2023

Additional Blank Pages. Be sure to properly label the question # that your work is referencing to receive full credit

## NEWEA/NYWEA Operations Challenge Process Control Event 2023

Additional Blank Pages. Be sure to properly label the question # that your work is referencing to receive full credit